Buckled Tin Oxide Nanobelt Webs as Highly Stretchable and Transparent Photosensors.

نویسندگان

  • Siya Huang
  • Chuan Fei Guo
  • Xuan Zhang
  • Wei Pan
  • Xi Luo
  • Chunsong Zhao
  • Jianghong Gong
  • Xiaoyan Li
  • Zhi Feng Ren
  • Hui Wu
چکیده

Stretchable and transparent inorganic semiconductors play a key role for the next generation of wearable optoelectronics. Achieving stretchability in intrinsically rigid inorganic materials is far more challenging than in polymers and metals. Here, we present a low-cost and scalable strategy to engineer inorganic semiconductors into a buckling open-mesh configuration, by which extraordinary stretchability (≈160%) as well as high optical transparency (>86% at 550 nm) can be realized simultaneously in SnO2 nanofiber webs. Moreover, the mechanical stretchability of SnO2 nanowebs can be further improved along with the optical transparency by precisely controlling the nanofiber density. The as-prepared freestanding nanowebs can be laminated onto curved surfaces by conformal contact. It is demonstrated that the fully exposed SnO2 nanowebs can be used as wearable UV photodetectors, showing reliable optoelectronic performance and remarkable tolerance to repeated complex deformations with body movements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes.

Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated l...

متن کامل

Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

Organic light emitting diodes (OLEDs) have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the ...

متن کامل

Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode

Over the past few years, extensive research efforts have been devoted to develop new transparent and flexible electrodes[1–3] with reduced cost, large area uniformity, and excellent electrical, mechanical, and optical properties, to replace the indium tin oxide (ITO) as well as to apply to nextgeneration soft electronics/optoelectronic devices. An oxide/metal/oxide multilayer system,[4] for exa...

متن کامل

Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode.

The flexible hybrid transparent electrode was prepared by a two-step process: graphene film was firstly grown on Cu foil by modified thermal chemical vapor deposition (CVD) and then transferred onto indium tin oxide (ITO) electrode on the polyethylene terephthalate (PET) substrate. The quality of the graphene is characterized by various analytic techniques, including the AFM, SEM, TEM, and Rama...

متن کامل

Characterization of Heat Propagation along Single Tin Dioxide Nanobelt Using the Thermoreflectance Method

In this paper, we studied heat transfer properties of a single tin dioxide nanobelt using non-contact high resolution thermoreflectance imaging technique. Temperature difference across the nanobelt was created by attaching its both ends to a microfabricated thin film heater and sensor pair. High resolution thermal images of the nanobelt and thin film devices were obtained at variant pulsing cur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 11 42  شماره 

صفحات  -

تاریخ انتشار 2015